
This new knowledge could help regenerative medicine scientists who are working to fight degenerative brain diseases. Science Daily explains:
"Nature did many experiments for us over the past 500 million years, using different molecular tools to build complex brains by independently centralizing smaller neuronal structures," said Leonid L. Moroz, Ph.D., a member of the Department of Neuroscience with the UF College of Medicine. "The octopus, for example, is very intelligent. It can learn by watching, and it has one of the most complicated brains of any animal without a backbone. And it evolved completely independently from us, using different genes, gene regulators and, in part, different neuronal signaling molecules."
Prof. Moroz said the finding prove the value of genome research to study evolution. He has an interesting web page on the Whitney Laboratory for Marine Bioscience website. He gives this description of the lab's work:
"Our laboratory works to characterize basic mechanisms underlying the design of nervous systems and evolution of neuronal signaling mechanisms. The major questions are: (1) why are individual neurons so different from each other, (2) how do they maintain such precise connections between each other, (3) how does this fixed wiring result in such enormous neuronal plasticity and (4) how does this contribute to learning and memory mechanisms? By taking advantage of relatively simpler nervous systems of invertebrate animal models, we combine neuroscience,genomics, bioinformatics, evolutionary theory, zoology, molecular biology, microanalytical chemistry and nanoscience to understand how neurons operate, learn and remember." Read more of the Whitney Lab website...